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Abstract 

High resolution Multispectral (MX) satellite imaging systems contain multiple bands with 

high spatial resolution and swath. Due to the complex mechanisms involved in image 

acquisition and data transmission for such systems, it is possible that the information in 

some of these bands is lost and even one of the bands (like Blue Band) does not exist during 

system de-sign to reduce system complexity. These datasets are unsuitable for end-use in 

such situations. Due to the missing blue band images, blue band needs to be synthesized for 

making a Natural Colour Composite (NCC), in order to get more insight from the data. It is 

essential to design methods which can faithfully reconstruct data given the available bands 

and a simultaneously acquired Panchromatic image (PAN). In this work, we propose a Deep 

Learning method to reconstruct full single-band images or a portion of a band in MX images 

using a dense U-Net based Wasserstein Generative Adversarial Network (WGAN). 

Specifically, we demonstrate the strength of our network by synthesizing blue band: a) from 

multispectral Red(R), Green(G), and Near Infrared (NIR) bands as inputs or b) from co-

registered PAN and multispectral R, G, NIR bands as inputs. Qualitative and quantitative 

results obtained from experiments performed on High-Resolution Cartosat satellite images 

show that our method is able to reconstruct images that are spatially and spectrally 

accurate. Proposed method is also demonstrated for cross satellite validation i.e. if one 

model is trained on a particular satellite, same can be used for the similar type of other 

satellites without using transfer learning, overcoming the need of ground truth. Metrics like 

peak signal-to-noise ratio (PSNR) and Frechet Inception Distance (FID) are used to evaluate 

our model at different steps of training to study training convergence. 

 

Keywords: Band Reconstruction; Deep Learning; Generative Adversarial Networks, Dense U-

Net, Wasserstein Distance 

 

Introduction 

Remote sensing is the process of gathering information about an object or area from a 

distance, typically using sensors and instruments mounted on satellites, aircraft, drones, or 

ground-based platforms. It has become an essential tool in various fields such as 

environmental monitoring, agriculture, urban planning, disaster management, and natural 

resource management. Remote Sensing is a complex combination of various subsystems 

starting from satellite building, launching and operational onboard. In the process of 

launching a satellite to acquiring remotely sensed images, lot of things could occur in an 

unfavorable situation in, before launch or after launch.  
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High-resolution remote sensing data become essential for detailed analysis of ground 

objects. Development of high-resolution imaging sensors are becoming complex systems due 

to requirements of high spatial, spectral resolution and swath. Also, the advancement of 

sensor technology has grown in complexity to meet the demands for greater precision in 

spatial, spectral and temporal aspects. Modern sensors employ intricate opto-electrical 

systems to cover extensive areas effectively. However, transmitting the substantial data they 

generate to ground stations poses challenges due to limited bandwidth. This can result in the 

data loss in one or more imaging bands. Consequently, the remote sensing community is 

highly motivated to develop algorithms that can effectively restore missing data from the 

available bands, recognizing the significance of this endeavor. 

Also due to the operational conditions of satellite sensors and the atmospheric 

environment, remote sensing images frequently exhibit typical image issues, including 

horizontal stripe artifacts, malfunctioning detectors, absent ports, haze, as well as missing 

single and multi-band data. Addressing these inherent challenges in spaceborne systems 

necessitates ground-based solutions to enhance data quality and make it more suitable for 

users. 

While there exist various approaches in the literature for reconstructing and inpainting 

non-satellite images, there is a notable scarcity of methods tailored for the high-resolution 

band reconstruction of satellite imagery. Traditional techniques for general images often 

tackle this problem by employing either parametric or non-parametric patch similarity 

measures, as seen in (Gupta et al. 2012) and (Ironi et al. 2005). More recently, deep learning-

based methods have exhibited remarkable performance improvements in tasks such as 

inpainting, colorization, and band reconstruction in the context of general images. Notable 

benchmarks in this realm include pix2pix (Isola et al. 2017) and image colorization (Zhang et 

al. 2016), along with CycleGAN (J.-Y. Zhu et al. 2017), which leverage Generative Adversarial 

Networks (GANs) (Goodfellow et al. 2020) to address these challenges. 

In the domain of satellite imagery, (Rangekar et al. 2017) harnessed conditional GANs to 

map coarse-resolution multi-bands to a coarser-resolution hyperspectral domain. Similarly, 

(Arad and Ben-Shahar, 2016) put forth a range of techniques for extracting hyperspectral 

bands from undersampled acquisitions within the spectral domain. Meanwhile, (L. Rout 

2020) employed a ResNet-based GAN model, augmented with expert regularization, to 

generate single-band satellite images from multiple bands. Another notable contribution, by 

(Jiangtao Xu et al. 2021), introduced a Dense U-Net generative adversarial network tailored 

for near-infrared face images, which demonstrated superior accuracy compared to Pix2pix 

and CycleGAN models. This method incorporates a Dense U-Net-based generator and a 

convolutional PatchGAN discriminator. 

In our work, our primary objective is to reconstruct a single blue band from one or more 

available bands, specifically within the context of satellite imagery. Furthermore, our 

proposed approach is evaluated for cross-satellite validation, aiming to determine whether a 

model trained on one satellite can be effectively applied to similar satellites without the 

need for transfer learning, given the absence of Ground Truth (GT) data. 

 

Proposed Method 

The problem statement states Artificial Satellite Image Regeneration by synthesizing some 

bands of images. We are regenerating band because some of the band is faulty or missing, 
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with high noise, haze or clouds. We are targeting regeneration to have minimal operational 

cost and complexity of our operations. For our problem we will be using GAN model because 

they produce promising result with high picture quality and minimum loss in information. In 

our approach, the GAN model will take a) multispectral Red(R), Green(G), and Near Infrared 

(NIR) bands as inputs or b) Red, Green, and Near-Infrared images, along with co-registered 

PAN band images, to generate the missing blue band. This enhancement in the generation 

process is intended to improve accuracy. 

 

 

Network Architecture: 

For this, we've employed a customized generator based on the Dense U-Net model (Jiangtao 

Xu et al. 2021), along with a convolutional PatchGAN classifier (Isola et al. 2017) as the 

discriminator. The role of the discriminator is to penalize deviations in structure at the scale 

of image patches. The subsequent sections will delve into the intricate details of the 

network's architecture and the training methodology. To illustrate, we will specifically 

describe the network's architecture for the synthesis of blue band images using co-registered 

PAN, Red, Green, and Near-Infrared (NIR) inputs as an example. However, it's important to 

note that the overall architecture remains consistent when working with different sets of 

inputs like NIR, R and G bands only. For a visual representation of the architecture, refer to 

Fig. 1. 

Let 𝑧1 ∼𝑃𝑃𝐴𝑁, 𝑧2∼𝑃𝑁𝐼𝑅,𝑅,𝐺 and 𝑥∼𝑃𝐵𝑙𝑢𝑒where 𝑃𝑃𝐴𝑁, 𝑃𝑁𝐼𝑅,𝑅,𝐺 and 𝑃𝐵𝑙𝑢𝑒, represent the 

distribution of PAN, NIR,R,G, and Blue bands respectively. Let z ∼ 𝑃𝑧 (𝑧1,  𝑧2 ), where 𝑧𝑖  

∈𝑅𝑀𝑋𝑁, i = 1, 2 and 𝑃𝑧 represents joint source distribution. Let 𝑥∼𝑃𝑦̂ where 𝑥 = 𝐺(𝑧) and 

𝑃𝑦̂ represents generator distribution. The corresponding sample of z in the target 

distribution is denoted by y ∼𝑃𝑦. The problem of blue band reconstruction is formulated 

such that the generator learns to sample from the distribution of missing blue band, 𝑃𝑦 given 

the corresponding sample from existing concurrent joint distribution, 𝑃𝑧. The generator 

model G operates on the source distribution z ∼ 𝑃𝑧, with z ∈ 𝑅𝐻×𝑊×4 with H and W 

representing the height and width of image patches, respectively. Let y ∼ 𝑃𝑦,  be the target 

distribution related to blue band images with y ∈𝑅𝐻×𝑊×1. Let 𝑦̂ ∼ 𝑃𝐺𝜃
 where 𝑦̂ = 𝐺𝜃(𝑧)  with 

𝑦̂ ∈ 𝑅𝐻×𝑊×1, and 𝑃𝐺𝜃
be the generator distribution parameterized by θ. In this setup, a 

discriminator, D, is designed to classify whether a given ground truth data sample y and a 

generated data sample 𝑦̂, conditioned on input z, belong to the real or fake sample space, 

respectively. D's role is to distinguish between actual data and generated data. 

 

Objective Functions: 

The objective function of D is used as that in Wasserstein GANs (WGANs) (Arjovsky et al. 

2017) to circumvent the mode collapse and stability issue of conventional GANs. 

Nonetheless, the WGAN's weight clipping operation restricts itself to a limited set of critic 

functions, potentially failing to effectively capture complex and challenging-to-learn latent 

features. To tackle this limitation, we integrate the objective function with Gradient Penalty 

(GP) (Gulrajani et al. 2017). 

In conventional GANs framework, loss function is defined as Eq. 1 and for pixel-to-pixel 

image translation we used L1 norm regularization for Generator with loss defined as Eq. 2. 
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𝐿𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑥~𝑃𝐵𝑙𝑢𝑒
[log(𝐷(𝑥))] + 𝐸𝑥~𝑃𝐵𝑙𝑢𝑒̂

[log(1 − 𝐷(𝑥))] (1) 

𝐿𝐿1(𝐺) = 𝐸𝑥~𝑃𝐵𝑙𝑢𝑒,   z ∼ 𝑃𝑍 (𝑧1, 𝑧2 ) 
[||𝑥 − 𝐺(𝑧)||1] (2) 

 

The objective function for training the generator model G includes two key 

components: the adversarial loss determined by the discriminator and the mean absolute 

error (MAE) between the generated sample y and the true sample 𝑦̂ defined as pixel-to-pixel 

loss in Eq. 2. Together, these elements define our ultimate objective for the generator is 

shown in Eq. 3.  

 

𝐺∗ = 𝑎𝑟𝑔 min
𝐺

max
𝐷

𝐿𝐺𝐴𝑁(𝐺, 𝐷) +𝜆 ∗ 𝐿𝐿1(𝐺) (3) 

where 𝜆 is the regularization parameter, assigned weight of the 𝐿1 loss in overall generator 

objective function. The final objective function to train D can be defined as in Eq. 4., where 

𝜆𝑔𝑝 is the weight for GP. 

 

𝐷∗ = 𝑎𝑟𝑔min
𝐷

 𝐸𝑦̂~ 𝑃𝐺𝜃
 𝑧~ 𝑃𝑧

[D(𝑦̂, z)] − 𝐸𝑦~ 𝑃𝑦 𝑧~ 𝑃𝑧
[D(y, z)]

+ 𝜆𝑔𝑝𝐸𝑦̂~ 𝑃𝑦̂ 𝑧~ 𝑃𝑧
[(||𝛻𝑦̂D(𝑦̂, z)|| − 1)2] 

(4) 

 

Datasets and Training Methodology: 

The dataset plays a pivotal role in Deep Learning techniques. To effectively train any deep 

learning model, a sufficient dataset is required, encompassing both the input and 

corresponding output distributions for supervised learning. In our case, we have opted High-

Resolution Cartosat (2S/3) satellite data in order to train a neural network for band 

reconstruction task. We've acquired Cartosat precision-corrected MX products and bundled 

products, which contain registered PAN and MX data at their native resolutions. These 

datasets span various acquisition dates and encompass diverse spectral signatures, such as 

cityscapes, landscapes, hills, deserts, and water bodies etc. This diverse dataset is essential 

to ensure that our network learns to accurately reconstruct features of various possible 

signatures which may come in scenes at inference time.  

Each Cartosat-3 scene covers a ground area of 17 km x 17 km, and we've utilized nearly 

250 scenes to generate image chips. Our dataset is derived from Cartosat images with an 11-

bit 1.1m Ground Sampling Distance (GSD) for MX and 0.28m GSD for PAN images. We've 

divided the original full-swath images belonging to different spectral classes, into patches of 

size 256 × 256 pixels to create the datasets. In total, we've generated 4,10,000 such chips, 

out of which, 3,00,000 chips are used in training, whereas 1,10,000 are used for testing the 

model. 

The training process was conducted on a server equipped with 4 TESLA V100 GPUs, 

employing a batch size of 8 chips and images of size 256x256 pixels. Training across all four 

GPUs took approximately 20 minutes for each epoch, and we completed 500 epochs. We 

trained the model using ADAM (Kingma and J. Ba 2015), optimizer with a learning rate of 1e 

− 5. The weights for gradient penalty and L1 losses are 𝜆𝑔𝑝  = 10 and λ = 100, respectively. 
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Fig. 17 Overview of our proposed Method and Model Architecture. 

 

Results and Discussion 

A GAN model's evaluation can be approached in two distinct ways. Firstly, the 

Qualitative Approach involves the comparison of images generated by the Generator with 

actual images. However, this method has its limitations, as the Generator can become so 

adept at producing realistic images that distinguishing them from genuine ones becomes 

visually challenging. Additionally, one can analyze the loss values of both the generator and 

discriminator. On the other hand, the Quantitative Approach entails the use of predefined 

metrics to assess the model's performance, providing a mathematical perspective on its 

accuracy. In this study, two metrics, PSNR and FID, are employed. After running the model 

for over 500 epochs on the primary dataset, the results indicated that the model converges 

as training progresses. Notably, key model parameters, such as generator and discriminator 

losses, exhibit minimal changes with ongoing training. To gain a comprehensive 

understanding of the model's performance, a comparative analysis using both Qualitative 

and Quantitative Approaches is conducted. Despite training our model with both 

approaches, utilizing NIR, R, G, and PAN+NIR, R, G bands for input distribution in the 

generation of blue bands, we have chosen to exclusively present results for the PAN+ (NIR, R, 

G) model owing to its better performance. 

 

Qualitative Results: Images generated by Generator from our proposed approach can be 

visualized as in Fig. 2 when applied to a variety of test samples. These samples have been 

thoughtfully chosen to exemplify the method’s ability to reproduce diverse spectral 

characteristics. Outputs are generated from PAN, NIR, Red, and green bands, which serve as 

inputs for our GAN model. The first and third rows of the figure display the generated 

images, while the second and fourth rows display the corresponding ground truth images. In 
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the generated image, we have replaced the generated blue band for visual comparison with 

the ground truth RGB images, including the target blue band. Blue band generation was 

performed for a portion of the complete Cartosat-3 satellite scene over Ahmedabad region 

shown in Fig. 3. The newly generated band is substituted in RGB visualizations. The left 

image represents the generated result, while the right image displays the original RGB input 

images. The proposed technique can successfully reconstruct complete blue band images 

with high visual quality, similar to the input images. 

 

Quantitative Results: In this context, we evaluate the model's accuracy through 

mathematical formulas and predefined functions. We have calculated metrics such as Mean 

Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), 

and the coefficient of determination (𝑹𝟐) for the generated blue band. The computed values 

across all test samples are as follows: 18.06 for MAE, 43.86 dB for PSNR, 99.26 for SSIM, and 

0.98 for 𝑹𝟐. The low MAE value suggests a favorable generation capability, as it signifies a 

minimal average error. Furthermore, the high PSNR value indicates superior visual image 

quality. The exceptionally high SSIM value suggests that the structural similarity remains 

well-preserved when compared to the ground truth images. 

 

Training convergence analysis: For training convergence analysis, we used FID and PSNR 

values generated for test samples. The FID value of the model was observed from epoch 70 

to epoch 500, as shown in the left image of Fig. 5. The FID value should be as low as possible. 

A lower FID value indicates that the images generated by the Generator are of higher quality 

as the number of epochs increases. The PSNR value of the generated image varies at 

different epochs, as depicted in the right image of Fig. 5. It is evident that the overall PSNR 

value increases from 70 epochs to 500 epochs. We concluded our model training at 500 

epochs based on an analysis of model loss, PSNR, and FID values. 

 

Fig. 4 illustrates comparison between original and reconstructed pixel values for blue band. 

The 𝑅2 value 0.98 indicate that there is a strong correlation between pixel values for the 

original and generated images during the reconstruction process. 

Cross Satellites validation and Analysis: 

For blue band generation training was done for Cartosat-3 and Cartosat-2E (GSD 0.6 m 

PAN and 1.6m MX) separately. One of the applications of this method is cross satellite single 

band image generation, where one of the bands (like Blue Band) does not exist during 

satellite system design in order to reduce the system complexity. Proposed method is also 

tested for cross satellite validation. We have trained with Cartosat-3 (C3) satellite data and 

applied to Cartosat-2E (C2E) satellite and vice versa. In Fig. 6(a), the plotted curve represents 

the fitting results obtained using the Cartosat-3 blue band model and applied to Cartosat-3 

data, yielding an impressive R-square value of approximately 0.98. Moving on to Fig. 6(b), we 

can observe the fitting curve derived from the Cartosat-3 model and its application to 

Cartosat-2E data, resulting in an R-square value of 0.86. In Fig. 6(c), we explore the 

application of the C2E model to Cartosat-3 data, which yields an R-square value of 0.75. 

Finally, in Fig. 6(d), the C2E model is employed with C2E data, showcasing an impressive R-

square value of 0.975. 
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This analysis reveals that our blue band generation network demonstrates 

commendable generation accuracy, both within the same sensor and in cross-sensor 

applications. Additionally, it is worth noting that this model can be effectively utilized with 

data from other high-resolution satellites, to achieve generation accuracy of approximately 

86%. Table 1 provides further insights by presenting an analysis of the difference images 

between generated blue band data and ground truth, emphasizing lower standard deviation 

and mean counts as indicators of better model accuracy. 

 

Fig. 2 Images generated by Generator from our proposed approach with PAN, NIR, Red, Green bands 

as inputs, can be visualized to a variety of test samples. 
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Fig. 3 Blue band generation for part of Ahmedabad scene of Cartosat-3 satellite. Left is Generated 

blue band replaced RGB image and right is input Ground Truth RGB images. 

 

Fig. 4 Original and generated counts plot for blue band. 

              

 
Fig. 5 FID (left) and PSNR (right) graphs with respect to training epochs. 
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Fig. 6 Cross satellite validation results for Generated Vs Original counts with R-square values 

 

Table 8 Difference image statistics between generated and ground truth blue band. 

Trained Model Input Bands Output Band Abs. Mean count Std.(count) R^2 

C3 C3-PAN, NIR, R, G C3-Blue 6 13 0.98 
C2E C2E-PAN, NIR, R, G C2E-Blue 2.5 9.5 0.975 
C3 C2E-PAN, NIR, R, G C2E-Blue 14 26 0.86 
C2E C3-PAN, NIR, R, G C3-Blue 25 31 0.75 

 

Conclusion and Future Scope 

The primary objective of this work is to create a deep learning model specifically designed to 

generate artificial high-resolution blue band images for satellites. The project involved an 

exploration of various GAN models tailored to our specific needs, with the ultimate choice 

being the Dense U-Net model. The training process involved the fine-tuning of parameters to 

minimize loss and mitigate any risk of model failure. The model achieved an impressive 

overall accuracy of 0.98, as assessed by the R2 score. Key metrics such as PSNR and FID are 

utilized to evaluate the model's performance during different training stages, with the final 

accuracy measured using the 𝑅2 score. 

For cross-satellite validation, the model trained on C3 data and tested on C2E data 

achieved a fitting accuracy of approximately 86%, while the model trained on C2E data and 

applied to C3 data achieved a fitting accuracy of around 75%. This cross-satellite application 

is beneficial for generating blue band images for satellites that lack this band, facilitating the 

visualization of natural color composites for various products. 

Despite the model's achievements, there is room for improvement in several areas. 

Future work will focus on enhancing the accuracy of the cross-satellite validation model by 
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adjusting parameters and updating the model architecture. Additionally, incorporating more 

advanced and contemporary deep learning methods, such as transformer networks, will 

contribute to overall model accuracy enhancement. 
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